Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Genet. mol. res. (Online) ; 4(2): 390-408, 30 jun. 2005. ilus, tab
Article in English | LILACS | ID: lil-445280

ABSTRACT

In the struggle for life, the capacity of microorganisms to synthesize and secrete toxic compounds (inhibiting competitors) plays an important role in successful survival of these species. This ability must come together with the capability of being unaffected by these same compounds. Several mechanisms are thought to avoid the toxic effects. One of them is toxin extrusion from the intracellular environment to the outside vicinity, using special transmembrane proteins, referred to as transporters. These proteins are also important for other reasons, since most of them are involved in nutrient uptake and cellular excretion. In cancer cells and in pathogens, and particularly in fungi, some of these proteins have been pointed out as responsible for an important phenotype known as multidrug resistance (MDR). In the present study, we tried to identify in the Paracoccidioides brasiliensis transcriptome, transporter-ortholog genes from the two major classes: ATP binding cassette and major facilitator superfamily transporter. We found 22 groups with good similarity with other fungal ATP binding cassette transporters, and four Paracoccidioides brasilienses assembled expressed sequence tags that probably code for major facilitator superfamily proteins. We also focused on fungicide resistance orthologs already characterized in other pathogenic fungi. We were able to find homologs to C. albicans CDR1, CDR2, and MDR1, Saccharomyces cerevisiae PDR5 and Aspergillus AtrF genes, all of them related to azole resistance. As current treatment for paracoccidioidomycosis mainly uses azole derivatives, the presence of these genes can be postulated to play a similar role in P. brasiliensis, warning us for the possibility of resistant isolate emergence.


Subject(s)
Humans , Antifungal Agents/pharmacology , Expressed Sequence Tags/metabolism , Paracoccidioides/drug effects , Drug Resistance, Multiple, Fungal/genetics , Transcription, Genetic , ATP-Binding Cassette Transporters/genetics , Paracoccidioides/genetics , Paracoccidioides/metabolism , Membrane Transport Proteins/drug effects , Membrane Transport Proteins/genetics , Membrane Transport Proteins/physiology , Drug Resistance, Multiple, Fungal/physiology , ATP-Binding Cassette Transporters/drug effects , ATP-Binding Cassette Transporters/metabolism
2.
Genet. mol. res. (Online) ; 4(2): 346-357, 30 jun. 2005. tab
Article in English | LILACS | ID: lil-445283

ABSTRACT

Paracoccidioides brasiliensis is a thermally dimorphic and a human pathogenic fungus. Our group has partially sequenced its transcriptome and generated a database of mycelial and yeast PbAESTs (P. brasiliensis assembled expressed sequence tags). In the present review we describe the identification of PbAESTs encoding molecular chaperones. These proteins, involved in protein folding and renaturation, are also implicated in several other biological processes, where the dimorphic transition is of particular interest. Another important issue concerning these proteins refers to their participation in the immunopathogenicity of infectious diseases. We have found 438 ESTs (184 in mycelium and 253 in yeast) encoding P. brasiliensis molecular chaperones and their co-chaperones, which were clustered in 48 genes. These genes were classified in families, corresponding to three small chaperones, nine HSP40s, 10 HSP60s, seven HSP70s, five HSP90s, four HSP100s, and 10 other chaperones. These results greatly increase the knowledge on P. brasiliensis molecular chaperones, since only eight of such proteins had been previously characterized.


Subject(s)
Humans , Molecular Chaperones/genetics , Expressed Sequence Tags/chemistry , Paracoccidioides/genetics , Transcription, Genetic/genetics , DNA, Complementary , DNA, Fungal , Genes, Fungal , Heat-Shock Response/genetics
SELECTION OF CITATIONS
SEARCH DETAIL